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We consider here the finite-volume approach in developing a two-
dimensional, high-order accurate. essentially non-oscillatory shock-
capturing scheme. Such a scheme achieves high-order spatial accuracy
by a piecewise polynomial approximation of the solution from its cell
averages. High-order Runge-Kutta methods are employed for time
integration, thus making such schemes best-suited for unsteady
problems. The focal point in our development is a high-order spatin!
aperator which will retain high-order accuracy in smooth regions, yet
avoid the oscillatory behavior that is associated with interpolation
across steep gradients, Such an operator is first presented within the
context of a scalar function on a rectangular mesh and then extended
to hyperbolic systems of equations and curvilinear meshes. Spatial and
temporal accuracy are validated through grid refinement studies,
invalving the: solutions of scalar hyperbolic equations and the Euler
equatians ol gas dynamics. Through a control-volume appreach, we
find that this two-dimensional scheme is readily applied to inviscid flow
problems invelving solid walls and non-trivial geometries, Results of a
physically relevant, numerical experiment are presented for gualitative
and quantitative examination, €' 1993 Academic Press, Ing.

1. INTRODUCTION

In recent years, a class of numerical schemes [or solving
hyperbolic  partial differential equations has been
developed, which generalizes the first-order method of
Godunov 1] to an arbitrary order of accuracy. High-order
accuracy is obtained, wherever the solution is smooth, by an
essentially non-osciffarory (ENQ) piecewise polynomial
reconstruction  procedure, which yields high-order
pointwise information from the cell averages of the solution,
at a given point in time. When applied to piccewise smooth
initial data, this reconstruction cnables a flux computation
which is of high-order aceuracy, wherever the function is
smooth, and avoids 4 Gibbs phenomenon at discontinuities.
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The first step in extending Godunov's scheme beyond
first-order accuracy was taken by Van Leer in [ 2], resulting
in a second-order algorithm, to which many of the ideas for
modern nonlinear schemes can be traced. Later, in [3, 4],
Harten was able to achieve second-order accuracy and
monotonicity by rigorously developing a class of roral-
variation diminishing (TVD) schemes. The schemes in this
cluss are required to revert Lo first-order at locul extrema, a
resuit of ensuring that the solution’s total variation is a non-
increasing function in time. In order to achieve uniform
second-order accuracy, Harten and Osher, in [5], were
willing to accept a weaker version of the TVD criterion,
thereby establishing a basis for what would become the class
of high-order ENO schemes, to be fully developed for
one-dimensional problems by Harten er al. [6].

It should be noted here the distinction between “high-
order” and “high-resolution” schemes. High-resolution
methods (e.g., [ 3,4,7]) are designed to capture discon-
tinuities within a minimum number of points, while usually
reverting to first order at smooth extrema. Therefore, such
schemes are not the best choice for the resolution of smooth,
low amplitude flow phenomena. On the other hand, the
dual capacity for shock-capturing and achieving high-order
accuracy in smooth regions makes ENQO schemes well
suited for the study of aercacoustic and transition-related
problems. They may therefore serve as an alternative to
spectral methods in solving such problems when shocks or
complcx geometries are involved.

The application of high-order ENO schemes to areas of
scientific and industrial interest obviously requires com-
pressible flow solutions in more than one spatial dimension.
In [87], Harten was the first to present a two-dimensional
extension of the finite-volume ENO schemes in [6].
Because these results were preliminary, their scope was con-
fined to solutions of scalar equations on a rectangular mesh.
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In this paper, we consider the finite-volume approach in
developing multi-dimensional, high-order accurate ENO
schemes for hyperbolic systems of conservation laws, as well
as their application on curvilinear grids.

Other multi-dimensional ENQ schemes have been
proposed, most notably those of Shu and Osher in [9, 10].
These schemes are radically different from the ENO
schemes in [6], in that the control-volume formulation is
discarded in favor of one which involves only point values.
The principal motivation for this approach is the greater
computational cfficiency of finite-difference algorithms,
when accuracy above second order is desired. However, the
finite-volume formulation is not without its attributes.
Among those we will address are grid conservation,
improved resolution of multi-dimensional flow features, and
easier implementation of most boundary conditions.

In the two sections that follow, we formulate the discrete
solution of a two-dimensional hyperbolic equation in terms
of controf volumes and the method of lines, and then we dis-
cuss the general design by which we can achieve high-order
accuracy. In Section 4, we present a spatial operator, by
which we can recover high-order pointwise information of a
two-dimensional scalar function from its cell averages. This
reconstruction operator is then extended to a vector-valued
function in Section 5, in order that we may apply our ENO
schemes to a system of two-dimensional conservation laws.
Section 6 extends our design to a general curvilinear coor-
dinate system, after which we present the results of numeri-
cal experiments which test all of the preceding ideas. In par-
ticular, we apply these ideas to the Euler equations of gas
dynamics. These results demonstrate the first successful
application of finite-volume high-order ENO schemes to
inviscid fiow problems involving non-trivial geometries and
solid walls.

2. FINITE-VOLUME FORMULATION

We wish to design high-order accurate ENO schemes
for the numerical approximation of weak solutions of a
hyperbolic system of conservation laws

Ut flu)+ g(u), =0, (1a)
subject to given initial conditions,
u(x, y,0)=u(x, y). (1b)

The function » = (u', 1%, ..., w™)" is a state vector and the
fluxes f(u) and g{u) are vector-valued differentiable func-
tions of m components. We assume that the system (la) is
hyperbolic in the sense that the m x m Jacobian matrices

of g

Aw=5,  Blu)=3

581/106/1-5

are such that any linear combination of A and B has m real
eigenvalues {A*(x)} and a complete set of m right eigenvec-
tors {r*(u)} and left eigenvectors {/*(u)}, which we assume
to satisfy the orthonormal relation /*-r/ = 48,,.

We assume that the initial-value problem (IVP) (1) is
well-posed in the sense that the sclution » depends
continuously on the initial data and that this solution is
piecewise smooth, with at most a finite number of discon-
tinuities. Appealing to well-known theoretical results, we
know that a weak solution of the VP (1) must satisfy (1a)
in the sense of distribution theory. Furthermore, this is
equivalent to requiring that v obey the integral form of (1a),
where the limits of integration can reflect any smoothly
bounded domain in the x — y plane and any time interval
(1!, 1*). Seeking such a solution, let the set {%};}, where

ngj= [xifl,'b Xy 1,’2] x [}’j— 1722 J’_f‘+1,‘2]s

denote a rectangular partition of the x— y plane, with
(x;, y;) denoting the centroid of each rectangle. With a
semi-discrete formulation in mind, we note that, for every
rectangle €, a weak solution of (1a) must satisfy

d . 1] - .
Egij(!)= _a_“|if'r'+1/2‘j(t)fi—1/2.j(t)

if

13 NIRUEY WEE] NG
where a,; = 4,x 4, y is the arca of €, and
- 1 pxiviz priela
G0=—["" [ utey0ydedy  (2b)

Ay vtz “¥—1i2

is the cell average of u over the control volume at time 7. The
fluxes fand ¢ are given by

Framdy= (""" fulrs a0y, 0)

Yie1i2

(2c)

Xi+1n2

Eiivr1p(t)= glu(x, Vi 1)) dx.

Xi- 12

(2d)

We now treat (2a) as a system of ordinary differential
equations for the purpose of time discretization, using a
“method-of-lines” approach. Along any 7= constant line,
the right-hand side of (2a) is strictly a spatial operation in
u, and we rewrite this equation, for fixed ¢, in the abstract
operator-product form

(1) = (Lu(1));, {3)

2|

thus eflectively “separating” the spatial and temporal
operations for computing weak solutions of (1).
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In [9], Runge-Kutta methods are presented for the time
discretization of ordinary differential equations which are of
high-order accuracy and total-variation diminishing
{(TVD), in the sense that the temporal operator itself does
not increase the total variation of the solution. We will
employ these Runge-Kutta methods to solve (3) and
achieve our destred accuracy in time. It remains to
approximate the operator # to high order.

3. A HIGH-ORDER ACCURATE SCHEME

Given {#"}, cell averages of a piecewise smooth solution
u(x, ¥, ") of (1), we desire a high-order accurate numerical
solution operator E, which will update these averages to
time ("*!'=1"+ Az, Specifically, we require that E, be
rth-order accurate in the sense of local truncation error; i.e.,
when applied once to the exact solution {u"}, E, satisfies

E.n"

"t =0, (4)

wherever uis sufficiently smooth, with 2 = max, ; {4,x, 4, y }.
Furthermore, we desire that our numerical update scheme
avoid the development of spurious O(1) oscillations near
discontinuities in #. In order to achieve this property, we
require our operator to be essentially non-oscillatory. Such
an operator satisfies, in the one-dimensional scalar case,

TV(E,ui) < TV(u)+ O(h'+9), (5)

for some g > 0, where T'V represents total vartation in x. For
details concerning the initial development of ENO schemes,
the reader is referred to [6] and the references therein.

Employing the formulation (3} for the numerical update
of the solution {&"}, we discretize the temporal operation
by using a Runge—Kutta method, which we write in the
form

=1

A= Y [0 4 B AU, =12, 0p,
m=0

;0 _ =» S(p) __ S+l
W —u,j, Uy =uy -

(6)

The order of accuracy achieved by this time discretization,
as well as its TVD property, is determined by the values of
the integer p and the coefficients « and £ (see [9] for
details).

Now, if we assume that the scheme (6) achieves our
desired rth-order accuracy in time, then clearly this scheme
satisfies (4) if we can evaluate (#u(7}),, the exact spatial
operation on the right-hand side of (2a). However, this will
not be possible, in the general nonlinear case of {1a). There-
fore, we replace the operator & with a discrete spatial

operator L, which acts upon the averages {u(¢)} and

approximates % to high order. To this end, we see that if
Lu(ty= Fu(t)+ O(h"), (7a}

then, upon replacement of % in (6}, the local truncation

error of our fully discrete scheme will satisfy (4), as required.
We define L explicitly by

_ 1 _ _
(Lﬁ(f))rf= o Lfiv i () —fis i (1)

+ &i e — 8 10(0], (7b)
where f and g are to be designed as high-order numerical
approximations to f and g in (2¢)-(2d). The first step in
obtaining these high-order accurate numerical fluxes is the
correspondingly high-order approximation of the solution
u({x, p, 7). We note that this approximation must be
pointwise, whereas the information we have at any time r is
that of the cell averages (2b). And clearly, since

g A =ulx,, y;, 1)+ O(h),

there is an inherent limit on the order of accuracy of our
scheme, if we use the cell averages directly in the flux
calculation. Therefore, let R? be a spatial operator which
reconstructs the set of cell averages and yields a two-dimen-
sional, piecewise polynomial R*(x, y; u(7)) of degree r—1
which approximates u{x, y, r), with a truncation error of
O(h"), wherever u 1s sufficiently smooth. We write this
relationship in the form

R, 3 (D) = u(x, 3, )+ e(e, y) I, (8)
Such an operator is discussed in Section 4.

To include the more general case, where f(u), in (2¢),
cannot be integrated in closed form, we will approximate
this integration by Gaussian quadrature. In order to express
the error made by this approximation, let g{x) be a C@*’
function whose integral on [a, b7 we approximate by the
“classical” Gaussian quadrature, ie., relative to the unit
weight function on the interval [—1, 1]. It can be shown
{e.g., [11]) that the error made by this approximation with
a K-point quadrature 1s given by

jb g(x) dx—2=°

g2ENE) b
N . N

K
3 aatr) =T [ Pilo

for some & in (a, b), where P is the polynomial of degree X
in the orthogonal basis that spans the space of polynomials
on [a, b], of degree not exceeding K. This quadrature
is exact when ¢(x) is a polynomial of degree less than
or equal to 2K—1. The roots of Pglx)=
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{x— x,)(x —x,) - (x — x,) are real, distinct, and lie on the
interval (&, b), making it clear that the above truncation
error is O((h—a)****'). Correlating this error to the
{(r — 1)th-degree polynomiai reconstruction (8}, we see that
for r < 2K, this truncation error is at worst O(4"*') when
r—1 15 odd and O(A"*?) when r —1 is even. Therefore,
using the “larger” error, for fixed x and ¢, and sufficiently
smooth f, the approximation of the flux integral {2¢) by
Gaussian quadrature satisfies

-

Hit+ 1,2

Frova =] x50 1))
Yi=112

A v K

=? Z e fu(Xy 20 Vi, 1))

k=1

+5(x, 4y YA, (9a)
forsome nin (y;_ 15, ¥;11,2) and s relates to the quadrature
error in the previous equation.

Now, let v,(x, y) denote the (global) piecewise polyno-
mial approximation to u which is determined by the
reconstruction operator R” in (8) and therefore satisfies

valx, y)=ulx, y, )+elx, ) A, (9b)
for fixed 7, wherever u is sufficiently smooth. Since [ is
assumed differentiable in u, it is therefore Lipschitz
continuous in », and thus, for fixed ¢,
Jldx, v, 1) = fo,(x, y)y+ dx, p) h (9¢)
where d(x, y) = 0Ofe(x, y}). Finally, we substitute (9c) into
the quadrature in (9a), and we see that

X
f,+1,tz ,(f)‘_‘zi Z LA (en(X s 12, ¥i))
k=1
td(Xiw s P )WY H St 0) T T (9d)
Therefore, if we define our “abstract” numerical flux

fH— l;‘l,_j(t) in (7b) by

Av X
5} Z e f(0u(X s 120 Yid)s

k=1

.fr'+l,t‘2,j(‘r)= (10a)

then the error made by the approximate flux difference
v ()= fi_ 1 (1) in the definition (7b) is given by

Soor (= Fiap (1)
=fis 2 —fi_ v (1)

Ajy s r
+T Z Ck[d(xi+L,Q:.Vk)_d(xs—uzs )1k
k=1
+ [5(xipr2s 1)~ 50210, TR (10b)

Clearly, if 4 and s are Lipschitz continuous on
[x;_1/2, X;4.12] for €ach y, then the error relation in {10b)
satisfies

.fm- 12, (7) —fs- 124 (0)

=fi+1/2,j(t)—ﬁ—l,f2.j(t}+ O(h"*32). {10c)

Moreover, 2 symmetrical argument can be used to show
that

i} — &1 pll)

=g—i.j+1,f2([)_gi,j—l,’z(l)+0(hr+2)a (10d)

where

d,x X
Z cy glvp(xy, Yiv1))

k=1

; (10e)

‘ g_i.j+1/2(t)=

Noting that the area a, is O(h?), we see that upon substitu-
tion of the numerical ﬂuxes (10a) and (10e), which satisfy
the error relations (10¢) and (10d), into (7b), we have thus
designed the spatial operator L that satisfies (7a), and there-
fore, when substituted for & in (6), vields a numerical solu-
tion operator E, which is rth-order accurate in the sense of
local truncation error. We note here that the desired trunca-
tion errors given by (10c)}-(10d) are achieved only if the
functions representing the errors due to the solution
approximation (8) and the quadrature (9a) are Lipschitz
continuous on %.

We now wish to modify the “abstract” numerical fluxes
{10a) and (10¢) such that (4) still holds in regions where the
solution is smooth and, in addition, these fluxes will account
for possible discontinuities in ». This modification follows
naturally from the reconstruction step (8), by which the
function v,(x, y), in (9b), can discontinuous at cell inter-
faces. Let 2, (x, y) denote the local representation of v,(x, ¥)
within a cell ;. The differing representations of #;(x, v),
from cell to cell, will create discontinuities at the cell
boundaries. The relative size of these local “jumps” is on the
level of the interpolation error in smooth regions and is
O(1) near discontinuities in w. Therefore, in order to resolve
these discontinuities, the flux integrands in (10a) and (10e)
are replaced by

(11a)
(11b)

fR’“[@j(x.-+ vz Vi P (X i) 1

ng[ (xks}1+1/2) r;+l(xksy,u+1/2)]

where f*™ [u,, v, 1 denotes the flux, across x = 0, associated
with the solution to the Riemann problem whose initial
states are u, and u,.
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To summarize, we write our scheme as the Runge-Kutta
method,

i—1

uff' = Z ot + By Ar(Lu"");], [=1,2,..p,
ﬁf}m_“ uf}"—u”“ (12a)
where
(Lu"™),= —— [fme_,-— s+ B g ]
(12b)
and
£im A } u m
f£'+)l/2.j_T Z CkfR (2 (X 1y2s Yichs J?H,j(xwl/zs}’k)],

(12¢)

-

R
g LA A xe Yok Py, Vi 2]

(12d)

. A:x
gE;}HP_ 2'2 Ci
s

with

'?jfj(xs .})):Rz(x’ }’1 lj(””)a X,,VG%;'- (123)
Assuming the error functions (x, v) and s(x, y} in (10b)
to be globally Lipschitz continuous, the numerical solution
operator E;, defined by (12), is formally rth-order accurate
in the sense of local truncation error as given by (4).
Furthermore, if these error functions remain Lipschitz
continuous for N time steps, where N=t/4r= 0(1/k), we
assume the cumulative error to be G(k"). Thus, at the end of
such a computation, we have a set {v 1, approximations to
the cell averages of « at time " whlch satisly
N —a¥ =0k (13a)
If we desire our high-order accurate output in pointwise
form, we simply perform one final reconstruction which, by
(8) and (13a), will vield
R(x, y; 0%y =u(x, y, ") + O(K"). (13b})
In addition to the accuracy properties (13), we desire that if
u should develop discontinuities, then the scheme (12) will
avoid O(1) spurious oscillations, and we will design the
reconstruction operator R to do so.

4. RECONSTRUCTION

The first and most important step in the high-order
approximations of £, ¢ is the method by which we obtain a

high-order accurate pointwise representation of the solution
u(x, y, 1) from the given set of cell averages {u(t)}. For
the purpose of clarity, we discuss the finer points of this
procedure within the framework of a scalar function defined
on a rectangular computational mesh.

In preparation, we find it necessary to briefly review the
notion of essentially non-oscillatory interpolation, Let w{x)
be a piecewise smooth function in x whose values are known
to us only at the discrete points {x,}. We introduce
Q,.(x; w), an nth degree piecewise polynomial function of x,
which interpolates w at the points {x,}, i.e.,

Q.(x;w) U g, (X w), {14a)

for x,<x<x,,,, (14b)

(14c)

Q. x;w)=gq,(x;w)
Q. (xwh=w(x),

all 4,
where ¢, ,(x) is the (unique) nth-degree polynomial that
interpolates w(x) at n+1 successive points {x;} which
include x, and x,,,. We are, therefore, free to choose the
other » — 1 points, and we do so subject to the condition
that w(x) be “smoothest” on the chosen interval in some
asymptotic sense.

It is suggested in [ 6] that information relevant to the
smoothness of w can be extracted from a table of divided
differences of w. For simplicity, we will use the notation &% f
to denote the set of k + 1 contiguous points whose left-most
members is x,, i.e.,

P =X Xty X 1
We will then use w[.ffj‘] to denote the kth-divided dif-
ference of w on the “stencil” Sﬂj’.‘ . A divided difference table
for w can be recursively constructed by

wlx;]

=w{Xx;);

wlS i ] *W[é”"’l]

Xivr —X;

w[FE]=

It is argued in [6] that the magnitudes of these divided
differences can serve as a tool to compare the relative
smoothness of w on various stencils. Since we always
assume any stencil we choose to be contiguous, we can
identify a particular stencii by specifying its left-most index,
which we denote by j(i). In [6], Harten et al. suggest that

(i) be chosen by the following hierarchical algorithm,

which begins (k = 1) by setting

Jii)=L (15a)
In order to choose j, . (f), k=1,..,n—1, we consider as
candidates the two stencils which are obtained by adding a
point to the left or right of the previously determined stencil.
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We select the one in which the (k+ 1)th-order divided
difference is smaller in magnitude, thus

Jeliy =1,
jl'c(i)y

e i Wl < Wl i
ket otherwise.
{15b)

Finally, we set j(i)=j,(i).

For h sufficiently small, the algorithm (15) will always be
able to determine an (n+ 1)-point stencil of smoothness
between any two discontinuities. Therefore if each g,, ;(x; w)
in (14b) is constructed with the aid of this adaptive-stencil
type of interpolation, then wherever w(x) 1s smooth,
Q(x; w) will satisfy

TV(Q,(x; wh < TV(w(x)) + O(h"*'); (16)
i.e. Q,(x; w) is an essentially non-oscillatory approximation
to w{x). Henceforth, (,(x; w) will denote the ENO inter-
polating polynomial of degree » whose construction
involves the adaptive-stencil algorithm (15).

We now describe the two-dimensional reconstruction
operator, It might seem plausible to extend the reconstruc-
tion operator R in [6] to two dimensions by simply
summing two one-dimensional operators, which is most
commonly done in conventional finite-volume algorithms.
As will become apparent, this approach will inherently limit
a numerical solution operator to second-order accuracy, as
it applies to the solution of a nenlinear equation. Nonethe-
less, we can describe the implementation of R? as a product
of two one-dimensional, “reconstruction-by-primitive”
operators in [6].

We are initially given a discrete set of cell averages {w,}
of a piecewise smooth function w(x, v),

VI’U= J +112J' VESY Wi, y) dy o~

{17a)
4;x Aj}’ Xicp Yy

For y; _ 1 < ¥ < y;4 1,2, We define a primitive function W,(x)

associated with w by

e

X0 Aj Yew_n

w(&, y) dy dg. (17b)

Secking a relationship between pointwise values of Wj(x)
and the discrete values {w;}, we see immediately from the
definitions (17a)-(17b) that

d:x ‘f’fj= W}(xu 2]~ W_,-(Xr— 12 b

and we can, therefore, establish a relationship at the cell
interfaces:

i
Wixipp) = Z A X Wy,

k=ip

(17c)

Now, if we interpret the notation w,{x) as the line average
in y of w(x, v) for a fixed x, then the definition (17b) clearly
implies

1

W-(X)=A—y

d a2 _
ax JJ wix, p)dy=wi{x). (17d)

Mi—12

This suggests that if we approximate W;(x) by Q,(x; W),
we can then obtain an approximation of w,(x) by defining
the first step in our reconstruction procedure as

(17¢)

Then #,(x) is a piecewise polynomial in x of degree r— |
which satisfies

U;(x)=w,{x)+ O(h7), (17f)

wherever w;(x) is and
h.=max; {4.x}.

If the procedure (17} is performed for all j, then we have
a set of piecewise polynomials {#;(x}}, each of which is a
high-order approximation to each w,(x). Clearly, from the
definition (17d), the form of w;(x) is equivalent to that
of a one-dimensional cell average on the intervai
[¥ 12, ¥4 1,21 Therefore, for a fixed x, we now treat the
set {7;(x)} as one-dimensional cell averages in y of a
piecewise smooth function wv(x,y), which we wish to
reconstruct to high-order pointwise accuracy in .
Analogous to the method (17), we define another primitive
function W(x, y) associated with v{x, y) by

sufficiently smooth in x,

>
Wix, ) =J vix, y}dy, (18a)
iyl
whose pointwise values we know at cell interfaces
;
Wix, v 1p0)= Z Ay ¥ Be(x). (18b)

k= fo

Fitting the point values (18b) of W(y) with a piecewise
polynomial Q (y; W) of degree r by ENO interpolation, we
can obtain a high-order pointwise approximation to v(x, y),
in y, by defining the second reconstruction step

d
R{y;o(x))=—0Q,(y; W)= p(x, y),

& (18c)

where, for fixed x, p(x, y)is a polynomial in y of degree r — 1
that satisfies

plx, y)y=uv(x, y)+ O(h}), (18d)
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wherever wo(x, y) is smooth and
h.=max; {4,y}.

Noting the reconstruction definitions and the error rela-
tionships above, we can see that the values obtained in (18c)
are the high-order pointwise approximations to w(x, y)

which we desired from the initial cell averages {w}, ic.,

sufficiently in

R*x, y;wy=R(y; R{x; W))=w(x, »)+ O(h"). (19)

We note here that the high-order relationship (19) cannot
be achieved, for r > 2, by simply summing two one-dimen-
sional operaters in a “directionally split” fashion. For
instance, upon reviewing equation (17e), which represents a
purely one-dimensional reconstruction, we recover, not
point values, but {7}, line averages in y. Though, as a func-
tion in x, these line averages are high-order approximations
to {W,}, as given by (17f}), the pointwise truncation error in
yis, at best, O(h2). A symmetrical argument can be made for
a pointwise error in x of O(h%) for a 1D-reconstruction in
the y direction. Thus, the directionally split approach to the
two-dimensional reconstruction problem would yield a
summation operator
RY(x, ;W)= R(x; W)+ R{p, w)=wix, )+ 0O(F).  (20)
The implementation of (20) in (12), for the solution of a
nonlinear equation, vields a second-order scheme, regard-
less of the one-dimensional truncation error of R. Figure 1
depicts an exampie of a reconstruction stencil, for each of
the operators {19) and (20), as based on a fourth-order one-
dimensional operator R. The entire shaded area represents
a fourth-order stencil, which might result from the product
(19), and the darker shading, a stencil determined by the
summation (20).

As for the high-order operator R?, we also note that each
of the one-dimensional reconstruction operators (17e) and
{18c) is essentially non-oscillatory, due to the nature of the

X

FIG. 1. Possible reconstruction stencils for the cell €, as determined
by R?and R*.

interpolating polynomial ,, as given by {16). Further-
more, we note that R? is “conservative,” in the sense that the
cell-averaging operator defined by the right-hand side of
(17a) is its left-hand inverse, i.e.,

1 N - -
_— J‘ J- Ri(x, y; wdydx=w,,
4;x 4,y i Yy

which is necessary in order that our numerical scheme (12)
remain conservative. This property results directly from the
various definitions in the reconstruction (17)-(18), and the
fact that O, is an nterpolating polynomial. It is the adap-
tive-stencil algorithm (15) that enables this reconstruction
(for sufficiently small %) to be high-order accurate on any
domain, where w(x, y) is stnooth, even if that region is near
one in which w(x, v} is discontinuous. Furthermore, algo-
rithm (15) is ultimately responsible for the desired non-
oscillatory behavior near a discontinuity, where the “jumps”
in R*(x, y; w)at cell boundaries become large relative to the
mesh spacing.

We further note that the error coefficient e(x, y) in (8),
due to this reconstruction, becomes discontinuous at points
where there is a change of orientation in the stencil of the
associated interpolation. This discontinuity may occur at
critical points of the function and/or its derivatives. It is
clear that, when e(x, y) fails to be Lipschitz continuous at a
point, the truncation error of the approximate flux dif-
ference in (10c) is only O(h"*'). We therefore expect the
cumulative pointwise error due to N applications of the
operator E, to be only O(h" ~!) at such points, but to
remain O(A") away from these points. Owing to the essen-
tially non-oscillatory nature of £, it is reasonable to expect
the number of points at which e(x, y) fails to be Lipschitz
continuous to remain bounded as 2 — 0. In this case, we
expect the cumulative error of our numerical scheme to be
O~ ') in the L, norm and O(#") in the L, norm.

5. SYSTEMS OF CONSERVATION LAWS

In this section, we extend the scalar reconstruction proce-
dure of Section 4 to solutions of hyperbolic systems of con-
servation laws. To this end, we now reconsider the IVP (1),
whose solution u is a vector of m components, as are the
fluxes f(#) and g(u). We now wish to develop a vector
reconstruction operator, denoted by R? which will
reconstruct a set {u,} of vector-valued cell averages to
high-order pointwise accuracy. Clearly, in this context, u;;
denotes a vector whose components are the cell averages of
the scalar components of «. It would therefore seem natural,
purely from the viewpoint of approximation theory, to
reconstruct the set {#;} by applying the scalar reconstruc-
tion R? in a component-wise fashion. However, this
approach is valid only if we assume that u(x, y, 1} remains
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free of discontinuities for the duration of a desired calcula-
tion. But in the more general case, when u(x, y, ¢) 1s a solu-
tion of a non-linearly coupled system of equations, such a
solution can admit the collision of discontinuities of the
same or of different families, as well as their collision with
boundaries, e.g., solid walls. In the vicinity of such
collisions, a componentwise reconstruction may develop
spurious oscillations during this brief encounter which do
not dissipate as the discontinuitics then distance themselves
from one another, if indeed they ever do. Numerical
experiments to demonstrate this potential problem in one
spatial dimension can be found in [67. In the following, we
describe a vector reconstruction procedure which attempts
to avoid this difficulty,

We begin by considering the constant coefficient case of

(1):f(1) = Au, g(u) = Bu, where A and B are constant m X m
matrices,

u,+ Au, + Bu, =10, (21a)

u(x, v, 0)=u"(x, y). (21b)

We aiso assume, for now, that our reconstruction takes
place within the context of a Cartesian mesh. We note that
the eigenvalues { /% } of 4 and {4%} of B are constant as are
the right eigenvectors {¢* }, {r B} and left eigenvectors {74},
{15} We assume that these eigenvectors are suitably
normalized so that

Uyorhy=1yri=36, (22a)
If we define the kth characteristic variables w¥ and w% by
the dot products

wﬁ:li-u, w"f,:!’;-u, k=1,2,.,m, (22b)
then it follows from (22a) that
u= 3y whrt =% wirh (22¢)
k=1 k=1

It is argued in [6] that, in the constant-coefficient case, it
is advantageous to use these characteristic variables (22b)
in the reconstruction procedure, rather than u itself. This is
due to the fact that, under the transformation (22b), the
coupled system (21b) becomes an independent set of equa-
tions, thereby rendering any discontinuity in a particular
characteristic variable “undetectable” by another (see [6]
for details).

Therefore, in the case of a linear system (21a), we can
describe our vector reconstruction as follows. Given {u,},
cell averages of a vector u, we begin by defining the cell
averages of the characteristic variables in the x-direction by
for jfixed, alii, {23a)

=k 3k =
WA.t'j_lA Uy

and then perform the scalar reconstruction given by (17e)
on these averages. Using the result (22¢), we can define the
first step of our linear vector reconstruction procedure by

Y R(x;wh) e =7,(x),

k=1

Rix;2)= (23b)

the right-hand side of which is the vector-valued analogy of
the resulting line averages in (17f). In analogy with the
two-step procedure in Section 4, the reconstruction (23b) is
performed for all j. For x fixed, we then proceed by
approximating the line-average characteristic variables in
the p-direction by the dot product

7. (23c)

—k
WB_J-—['B'

The scalar reconstruction (18c) is applied to the values
(23c) and, for fixed x, we have a polynomial in y

#

T R(y;

k=1

R(y;v(x)) = (23d)

I’B,

which completes our reconstruction for the linear case and
we write

R*(x, y; &) = R(y; R(x; &)

ny

=3 R(y,!" Z R(x; 17 -1) r”)r’,‘;. (23e)

k=1

We now wish to generalize the reconstruction procedure
{23) to the case of a nonlinear system. In the nonlinear case
of (21a), the matrices A(w), B(u) are now functions of u, as
are the eigenvalues {4%(w)}, {A%(1)}, and the eigenvectors
[Py, (PG}, {5}, {5(w)). Our extension will
require the use of locally defined characteristic variables, in
the following manner. In order to reconstruct ¥(x, ¥) on the
rectangle €, we first derive a set of local average charac-
teristic variables {w,}, where n varies in the i-direction. We
do this, for a fixed j, by computing dot products of 7% ()
with the cell averages {u,,} associated with intervals in the
immediate vicinity of (x; 5, x;, ;,2); i€,

wi=15(2,) @y, n=i—g,..i+q,  (24a)
where g is the degree of the reconstruction polynomial. We
then apply the scalar reconstruction operator R to this set
of 2¢ + 1 variables in (24a). This “local linearization” allows
us to apply the linear vector reconstruction described in
(23). The first step in our nonlinear vector reconstruction

procedure then becomes

R(x; )= 3 R(x;wy,) rh(a,)
k=1

t

(). (24b)
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Upon performing (24b) for all j, then, for x fixed, we define
a set of local “line-average” characteristic variables {w*} in
the y-direction:

W, =15(5)-8, for n=j—g, ..j+q (24c)
We complete our nonlinear reconstruction by applying the
scalar operator R to the set of local variables in (24c) which

results in

R(y; u(x)) =

k

R(y; wh(5,)) ri(s)).
1

(24d)

W[~z

Thus, our vector reconstruction operator R? is a product of
(24b) and (24d), which approximates the vector averages,
pointwise, to high-order,

R*(x, y; (1)) = R(y; R(x; (1))

=u(x, y, t)+ O(R"). (24¢)

and is designed to avoid the oscillatory behavior associated
with colliding discontinuities.

6. CURVILINEAR COORDINATES

We now wish to gencralize the spatial domain of
solutions of the IVP (1). To this end let

x=x(& 1), y=y(n), (25a)

denote a smooth transformation from the physical x— y
plane to the rectangular £ — 4 plane. The differential trans-
formation is then

dx=x;dé+ x, dy

{25b)
dy:yé d§+yr;dn:
whose Jacobian determinant J is
J=xp,— yex,. (25¢)

Let €, denote a discrete control volume in physical space
which is mapped into a rectangle

@;«:(5:71;2,§i+1f2)x(ﬂ;-1;2=ﬂ_f+1/2) (25d)

by the transformation (25a). Then for any such region, our

semi-discrete formulation for a weak solution of (la)
remains identical in form to (2a):

d . 1] - 7
3 Yol = " ay [f"”/z.j(f)—ﬁ—:/z.f(’)

g (D= go, 1,2(:)]. (262)

I_Jnder the transformation (25), we interpret the cell average
u;(¢) at time ! as

- 1 réivuz piyeip
ﬁff(’)=;jé J— f“(fa n, DY J(E nYdEdn,  (26D)

=12 TR
where a, is the area of €;. The fluxes fand § are given by

LIEST

From 0= G 0) o, (260)
Hi=12
Sivy o
Gi ()= ) G(u(S, 1172, 1)) dE, (26d)
where
- F(u) = _, ,
()= y,fu)—x, glu) (26¢)

Gu)=x; glu)— y  flu),

and f{u) and g{u) are the Cartesian flux vectors in {1a).

Having defined the necessary terms of our finite-volume
formulation in a curvilinear coordinate system, we now
wish to discretize our spatial and temporal operations.
Concerning our Runge-Kutta time discretization, the
extension is straightforward. As for the spatial operation, we
note two basic modifications that must be made.

The first alteration involves the reconstruction operator.
Having clearly and consistently defined this procedure in
terms of a rectangular mesh, we therefore would like to be
able to perform the reconstruction procedure in £ — y space.
Given a cell average i;;, as defined by (26b), we see that the
quantity a,u, can be interpreted as a “cell average” of the
function w(&, i) J(<, #) on a corresponding computational
cell of unit area. Therefore if we choose, instead, to
reconstruct the set {a,u,} of cell averages which are
“scaled” by their respective areas, we transform the
reconstruction procedure to rectangular coordinates and
can simply use the procedures outlined in Sections 4 and 3.
The piecewise polynomial we construct by this approach
will be a high-order approximation to the product of u(&, y)
and J(&, n), and therefore must be “re-scaled” by J(£, ) in
order to yield the pointwise approximation to 1 we need to
evaluate the fluxes (26c)-(26d). Thus, we define our
curvilinear reconstruction operator R* by

" - 1 -
RE, 3 it) = —— R(C, n; au), (27)
(& 1)
with the vector analogy R? defined in a similar manner. We
do note that, in the case of vector reconstruction the various
eigenvalues and eigenvectors required for this purpose are

now the corresponding quantities of the matrices
A=y, A—x B,

n )

B=x,B—y A
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The second modification concerns the computational
mesh itself. Within the context of the operator R? in Sec-
tions 4 and 5, we note that when we desire accuracy that is
higher than second-order, a piecewise linear interpretation
of a two-dimensicnal grid will not suffice. This is due to the
fact that, once we require more than one point in the
quadrature which wiil approximate the flux integrals
(26c)-(26d), we can no longer assume that the quantities
{xe Xy Veo g} in (26€) are constant along a given cell
boundary. We must, therefore, assume that the mesh is
“truly curvilinear” and account for any change in these grid
metrics at each point required in the quadrature.

Then, our flux calculation at a quadrature point in the
computational space begins with the high-order Tepresenta-
tion of the solution by a polynomial : #,(¢, ), in each cell
2, using the reconstruction (27). OQur numerical fluxes can
then be written

41

f;‘+l/2‘j(t)=_2"

u[\/]>:

ka {g?,j(éi+1/2= ”Ik):'(%’+ 1,;(":.'“/2; 'Vk)]

(28a)

[g’u gk’ﬂ_,'+1/2) Lj+1(éksr’j+1/2)]'

(28b)

é K
g;,~+1/2 _TZ

Now, assuming that the transformation (25a) is sufficiently
smooth, the numerical scheme resulting from the curvilinear
formulation (26) and the modifications mentioned above
will be rth-order accurate in smooth regions, as defined by
(4}, and will avoid oscillations near steep gradients.

We make one further generalization. It so happens that
there are a lot of applications of structured computational
meshes for which a closed-form transformation is not
available. For example, a set of grid points may be initially
generated as a solution of a system of differential equations,
after which they may then be subjected to some smoothing
operator, e.g., Laplacian. In such a case we do not have a set
of Egs. (25a) from which to determine all the grid quantities
necessary for the flux calculations {28).

However, given such a set of points, we might consider
the equivalent of a locally defined set of transformation
equations which are derived by polynomial approximation.
By this we mean that each “grid line” through a set of points
in physical space is approximated by polynomial inter-
polation and that all the necessary mesh quantities are
calculated from these polynomials. For instance, on the face
n=n,_2 of &, in (25d), we need only determine the
dependence of x and y on £. If, say, we desire a cubic
pelynomial representation of the transformation on this
computational face, then we might choose the physical
points (x, y) corresponding to theset {&,_;,, &1, & 1
Eiv3nt along g =#;_:, a8 our interpolation set. The dis-

tribution of £ as a function of / can be arbitrarily taken as
uniform. Denote by x’(¢) and '(¢) the polynomials deter-
mined by this interpolation. The metrics that we need on
this face are approximations to x, and y,., which are easily
obtained by differentiating x'(¢ ) and y'(¢). This procedure is
extended by symmetry to the determination of polynomials
x'(g) and y¥'(y) on a ¢=const face of ;. Clearly, the
physical points (x, ¥) we choose to approximate a grid
line along a given cell face may have to reflect a one-sided
interpolation near a computational boundary.

These same polynomials approximating the transforma-
tion along the four sides of &; can also be used to compute
an approximate area of the physical cell €, by

ab=%§ x’dy’_y’ dX',
f,

i

where I'; is the boundary of %, and dx" and oy’ are the
correspondmg approximations to (25b}. An approximate
Jacobian determinant, which we will denote by J', is also
obtainable by the following reasoning: If the transformation

(25a) existed, then clearly, we would have the relationship

ay=1"" " Kz de an,

Zimj2 Y-

and therefore we may interpret a local area as a rectangular
“cell average” of J(¢, u). Thus, having first determined
approximations {«a} to the cell areas as described above,
we apply our scalar reconstruction algorithm to this set and
define J' by
J(& =R ;') (29)
We note that, without a known transformation (25a)
from which to mathematically determine “sufficient
smoothness,” we can no longer make the claim concerning
formal order of accuracy when this polynomial grid
approximation is employed. In fact, a high-order polyno-
mial approximation of a grid which is insufficiently smooth
can result in the definition of contrel volumes whose
boundaries are in serious error with a desired geometry.

7. COMMENTS

At this point, a few remarks are in order, the first of which
concerns the stability of the scheme (12). We assume our
scheme to be stable under the “conventional” explicit CFL

time-step restriction. In the discrete scalar case, this is given
by

A —min|: Ly i|
CFL iy LIS (uy)l 4,y + 18" ()l 4,x
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and is easily extended to a hyperbolic system. The positive
number “CFL” is bounded above by the appropriate value
required for the stability of the chosen Runge-Kutta
method in [9]. For orders of accuracy r =2, 3, and 4, the
upper bounds on the vajues of the CFL coefficients are 1.0,
1.0, and 0.87, respectively.

Regarding the cost of high-order finite-volume schemes, it
should be noted that the use of these algorithms will be
more costly than a correspondingly high-order finite-
difference algorithm. The lower cost of a finite-difference
scheme is largely due to the fact that it never involves cell
averages. When pointwise values are used, the formal order
of accuracy can be achieved with spatial operators of a sum-
mation type, thereby requiring less flow-field information
for a flux computation. However, it is expected that a
finite-volume scheme may be capable of better resolution of
multi-dimensional flow features, due specifically to the truly
multi-dimensional stencil of information which is utilized,
as discussed in Section 4, regarding Fig. 1.

Generally speaking, grid conservation 15 a well-known
advantage of finite-volume schemes. However, it should be
noted that the curvilinear extension presented in Section 6,
which utilizes the exact mesh quantities of a known trans-
formation, will not exactly preserve a uniform flow, but will
preserve it to high-order. This high-order truncation error is
due to the reconstruction (27) and the Gaussian quadrature
in the Mux integration (28). However, if, for a given
problem, exact freestream preservation is deemed essential,
then it can be accomplished in the following way. Although
we assume that a smooth transformation (25a) is known, we
do not use it to compute the necessary metric quantities
{x:, ¥ X,, ¥, ), but instead we approximate them to high-
order by the polynomial interpoilation procedure discussed
in the latter portion of Section 6. In addition, the pointwise
distribution of the Jacobian determinant is approximated
by the procedure (29}, using either exact cell areas or high-
order accurate approximations. This will cause exact can-
cellation of the Jacobian determinant in the reconstruction
(27}, when u(¢, ) is a constant, leaving only the integration
of the outward face normal on the boundary of &, in (28).
Having locally approximated the dependence of x and y on
& and n by polynomials of degree r — 1 on cach face, the
Gaussian quadrature in (28) will be exact, thereby ensuring
that the discrete contour integral vanishes. In addition to
the exact preservation of freestream, in this case of local
approximation of a known smooth transformation, our
curvilingar scheme retains its formal high-order accuracy as
well.

As for boundary conditions, the finite-volume schemes
appear to have an advantage, if only in the philosophy of
their implementation. The application of boundary condi-
tions in a finite-difference scheme wusually requires a
modification of the governing equations and/or extrapola-
tion from the interior of the computational domain to the

exterior. Boundary treatments in the finite-volume setting
are less subjective, in the sense that the calculation of a flux
across a cell face, which is coincident with a boundary of the
computational domain, is fundamentally no different from
that of any other flux within the domain. The solution of the
Riemann problem is determined by two solution states on
the boundary and the problem description there. One of the
required boundary states arises naturally from the
reconstruction procedure on the interior. The exterior value
is obtained from knowledge of the flow physics on the
boundary.

8. NUMERICAL EXPERIMENTS

In the following, we present a few examples of numeri-
cally computed solutions using the scheme (12} as well as its
extension to curvilinear coordinates. We have performed
grid refinement studies on scalar equations and the Euler
equations of gas dynamics, in order to test for the computa-
tional accuracy of our scheme. We also present the numeri-
cal solution of a physical problem, for which experimental
results are available for qualitative and quantitative
comparison.

ExaMpLE 1. In order to test our high-order ENO
scheme {12) for its accuracy, we solve the two-dimensional
linear advection equation

u,tu, +u, =10,

10, (30a)

with 1mitial data

u(x, y, 0y=1cos m(x + y)+ 1. (30b)
The solution of (30) is two-periodic in x and y for all time.
By restricting our computational domain to —1<x, y<1,
we thereby make the boundaries two-periodic also, effec-
tively removing them from consideration. We note here that
even though we are solving a linear equation, the high-order
scheme (12) applied to (30a) is still non-linear, due to
the adaptive stencil algorithm of the reconstruction
operator R*.
The exact solution of (30) is

u(x, y, T)=%COS ﬂ?(x+y—2[)+%.

This solution is truly two-dimensional, since its “wave
front” is at an angle of 45° to the x and y axes. We further
emphasize the two-dimensionality of the numerical solution
by discretizing the computational domain so that dx # Ay.

Since the solution is smooth for all time, we apply our
scheme for one period in time, i.e., to time r = 2.0, at a CFL
of 2, The number of iterations required to do this on a given
grid is high enough to expect a significant accumulation of
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TABLE1

Solution Error-—Scalar Advection—3rd Order

TABLE III

Solution Error—Burgers Equation—3rd Order

Grid lel o re kells r. Grid lell.., re llefl; re
Ex12 1559 E—1 9.725E-2 §x12 3765E~-2 1.235E-2
16 x 24 2331E-2 274 1420E—2 278 16 x 24 9549E—3 1.98 2165E~3 251
32x48 3002E-1 297 1907E—3 2.90 32x48 2I1E-3 218 3.093E—4 281
64 x 96 3T E—4 3.00 2283E—4 3.06 64 % 96 4264 E~4 231 4610E—5 2,75
128 % 192 4,666 E —5 3.0 2855E—5 3.00 128 x 192 8988E—5 225 6958 E—6 273

error. We have performed this test on five consecutively
refined meshes for the scheme (12) with orders of accuracy
r=1, 2, 3, and 4. Though good results were obtained in all
four cases, we are particularly interested in the “higher-
order” cases r =3 and r=4. These errors are presented in
Tables I and I1 and are calculated with respect to the L,
and L, norms. The values labeled “r,” are the “computa-
tional orders of accuracy.” These values are computed by
assuming a linear accumulation of error between two
successive meshes. The exact and computational solutions
were compared by cell-centered pointwise output. We see
“ong less order” of accuracy in the L_, norm for r=4. We
therefore expect that there are points in the solution where
the reconstruction stencil is discontinuous, as referred to in
the closing paragraph of Section 4. However, the third-
order error for this particular problem is uniform.

ExaMPLE 2. We now test a nonlinear equation, namely
the two-dimensional Burgers equation

the solution remains smooth. Tables IIT and IV illustrate
the accumulated errors for this test case for r =3 and r =4.
The exact solution is computed by using Newton—Raphson
iterations to solve the characteristic relation

u(x, y, t)=jcos m{x+ y—2ut) + 3.

In this case, we do notice the “drop” in the order of
accuracy, with respect to the L, norm, in the third-order
case. The solution was then computed to and past the point
of shock formation, with no visible oscillatory behavior
near the discontinuity.

ExampPLE 3. In order to validate our extensions to
hyperbolic systeins and curvilinear coordinates, our final
grid refinement study involves the solution of the two-
dimensional Euler equations of gas dynamics, which we
write in the form

U, + F(U) + G(U), =0, (32a)
wo+ (qut) + (), =0, >0, (31a)
’ where
again with initial data T p ou
2
u(x, y,0) = Leos n{x+ y)+ 1. (31b) v=| " | Ro=| PP
U pun
We solve the IVP (31) on the same domain as the previous | pE (pE+ Plu 126
example and again apply periodic boundary conditions. In T o (32b)
this case, due to the non-linearity of Eq. (31a), gradients
immediately begin to steepen upon the first time step, until G(U)= guv
a shock eventually forms at time ¢ = /5. We therefore apply pr+ P
the scheme, using a CFL of 0.75, up to r=0.15, when | (pE+ P)v
TABLE 11 TABLE IV
Solution Error-—Scalar Advection—4th Order Solution Error—Burgers Equation—4th Order
Grid llell e llell, e Grid lel o re lell, re
8x12 8764 E--2 5495E-2 8§x12 2632E-2 7525E-3
16 x24 021 E-2 .10 4H3IE-—3 349 16x24 4373E-1 2.59 9585 E—4 297
32x48 1239 E-—-3 3.04 4410E—-4 3.19 32x 48 4.192E—4 3138 8113E—-5 3.56
64 x 96 1350 E-4 318 JOV3E-5 3.83 64 x 96 4374E-5 326 6.243E—6 370
128 % 192 1544 E—5 3.17 2165E—6 3.84 128 x 192 4361 E—6 333 4920E ~7 3.67
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Here p, P, and E are the density, pressure, and total specific
energy, respectively, and u and v are the Cartesian com-
ponents of the velocity vector V. We close the system
{32a)-(32b) of four equations with the polytropic equation
of state
P=(y—1)p(E— V), (32c)
where y is the ratio of specific heats.
The problem we solve is that of entropy advection. The

pressure and velocity fields are uniform, with an initial
density distribution given by

p(x,3,0)=1 —§+ a[ H(x) H() T2, (33a)

where

{33b)

H(x) =%[1 + cos sin @m

and « is a parameter. As a time-dependent solution of (32),
the density distribution (33) is two-periodic for all time and
convects with the uniform velocity, We choose to solve this
problem on a curvilinear mesh, and our transformation is
given by

|
x=¢——sin{n(& —n)), (34a)
4
1 : =
y:n—4—sm(7r(n—d)- (34b)
s
¥
10
. 5
1
{
00 ‘
1
1 L
-1.0L .
] | 1 X
-1.0 0.0 1.0

FIG. 2. Curvilinear mesh determined by the transformation (34).

TABLE V

Solution Error—Euler Advection—3rd Qrder

Grid

el re el r.
8x8 9.543E-2 3098 E—2
16 x 16 L 706 E—2 248 5673E--3 245
32x32 2132 E~3 300 7651 E~4 289
64 x 64 2999 E—-4 2.83 9806 E—3 296
128 % 128 5486 FE—5 245 1236 E—5 2.99
256 x 256 1559 E-5 1.82 6958 E—-6 3.00

Due to the fact that the mixed second derivatives of this
mapping are non-trivial, there is significant skewness in the
grid generated by this transformation, particularly along
the diagonal, as shown in Fig. 2.

We begin with the density distribution (33), with « =0.01,
to perturb a Mach 1.0 flow, which we orient along the mesh
diagonal. Because the x — y coordinates determined by (34)
are two-periodic, as is the solution of (32)}-(33), we restrict
our computational domain to the square [ -1 <<E< 1] x
[—1<#=1] and apply periodic boundary conditions.

In its rigorous form, the scheme (12) requires the exact
solution of the Riemann problem, in order to determine the
fluxes (12¢)—(12d). In applying the scheme to the solution of
the Euler equations, we approximate this step by using the
approximate Riemann solver developed by Roein [13]. We
compute the solution for one period in time, at a CFL of 0.8,
and compare with the exact solution. The solution errors for
this grid refinement study are shown in Tables V and VI, for
third- and fourth-order applications of the scheme (12}. The
resulting computational orders r, for the L, error are
comparable to those of Examples | and 2, which were
calculated on a rectangular mesh,

ExaMmPLE 4. We turn now Lo a more physically perti-
nent problem. Again, we solve the two-dimensional Euler
equations of gas dynamics, this time as the solution pertains
to the reflection of a moving shock wave from an inclined
wall. The self-similar nature of such a solution lends itself
to a rigorous analysis which is well documented in the
literature (e.g., [147]), and we therefore omit any general

TABLE V1
Solution Error—Euler Advection—dth Order

Grid llell o re e re
8x8 5782 E-2 1818 E—2
1616 7481 E—3 295 1582 E~3 3.53
32x32 937TE—4 3.00 1.857E—4 3.09
64 x 64 LOB2E—4 R 1400 E—5 ENE]
128 %128 1209 E—5 316 1011E—6 379
256 x 256 L33BE-6 318 TI05E—8 3.83
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FIG. 3. (a) Initial conditions for the Mach reflection problem. (b) Computational mesh for the Mach reflection problem.

discussion of this phenomenon. These oblique shock
reflections have been the subject of extensive experimental
and computational research and the interested reader is
referred to [15-17] and the references therein.

Our problem begins with a plane shock, whose Mach
number we denote by Mg, which is moving into still air
towards a wall inclined by an angle 8, to the direction of the
shock’s motion, as shown in Fig. 3a. This flow orientation is
chosen to facilitate comparison with existing experimental

interferograms in [18]. The problem becomes two-dimen-
sional when the shock encounters the wall and forms a
reflection whose structure can be quite complex. We
examine a case which results in a double Mach reflection.
The wall angle 8, is 40° and the shock Mach number
is 3.72. This type of reflection exhibits a complex structure
containing shock diffractions and slip lines, and it is
particularly demanding of any computational aigorithm.
In addition to the demanding nature of the solution itself,

C
100}
15
P
50
2.5 —— 4th-Order ENO
o Experiment
0.0 L 1 |
0.2 0.15 0.5 0.65 1.2
xtL

FIG. 4. (a) Experimental isopynics (Rel. {18 }). (b} Density contours—fourth-order ENO. (c) Wall density (experimental data from Ref, [18 ).
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this problem is also made difficult by geometric concerns,
largely due to the presence of a sharp corner. Although there
is no way to rid ourselves of the corner itself, we attempt to
mitigate its presence by using a curvilinear grid transforma-
tion. A portion of our particular mesh is shown in Fig. 3b,
and it is generated by a Schwarz—Christoffel transformation.
We could use this transformation to derive all of the
necessary grid quantities referred to in Section 6. However,
we would like to test our scheme in its most general form.
Therefore, given a collection of points generated by this
transformation, we calculate all of our mesh variables
from the approximate grid lings we generate by polynomial
interpolation.

Our initial conditions are the two constant states U, and
U, which determine the desired plane shock, oriented as in
Fig. 3a. These conditions are normalized with respect to the
still-air initial state I/, and are conservatively interpoilated
onto the computational mesh. This initial shock is then
allowed to propagate through the flow field in a time-
accurate manner. Provided we ensure that the entire reflec-
tion remains within the limits of the grid, the boundary
conditions are relatively simple. The only concern at
the far-field is adequately accounting for the movement of
the plane shock. On the wall, a condition of tangency is
imposed. We apply our scheme, in its curvilinear version,
using Roe’s approximate Riemann solver, to this test case
for 400 time steps using a CFL of 0.8 on a 180 x 40 grid.

Figure 4a is an interferogram, from [ 18], resulting from
an experiment designed to photographicaily exhibit the
density structure for this test case. (The alphabetical
labeling of this picture is not relevant to our presentation.)
Figure 4b depicts density contours for a fourth-order
numerical solution. We note good qualitative agreement
with the experiment. Although the solution contains two
triple points, the characteristic reconstruction procedure of
Section S appears more than adequate for the resolution of
this complicated shock structure, without oscillations.

In Fig. 4¢, we plot the fourth-order density solution on
the wall in order to make a comparison with experimental
measurements in [187]. The x-axis is scaled by the distance
L from the incident Mach stem on the wall to the corner, the
Mach stem location being x =0, and the corner at x=1.
Overall agreement with the experimental data is as good if
not better than a similar comparison in [18], in which a
second-order solution was computed on a 420 x 100 grid.

9. CONCLUDING REMARKS

A finite-volume high-order shock-capturing scheme
has been developed for the computation of solutions of
two-dimensional hyperbolic systems, In particular, the

finite-volume schemes in [6] have been extended to the
two-dimensional Euler equations of gas dynamics for
applications on rectangular and smoothly varying grids.
Third- and fourth-order algorithms have been numerically
validated for accuracy and successfully applied to a physical
problem. The usefulness of shock-capturing schemes which
are of formal high-order accuracy in more than one spatial
dimension appears certain. The results in Example 3 suggest
that these types of schemes may be useful in scientific areas
where the time-accurate resolution of weak waves is crucial,
such as in the arca of aeroacoustics. Example 4, on the other
hand, illustrates the capability of a high-order algorithm to
resolve a complicated shock structure, without oscillatory
behavior. Such schemes may provide a promising alter-
native to spectral methods, in the study of aeroacoustic and
transition related problems, in which shocks or complicated
geometries are involved.
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